
Best Python Libraries for
Web Scraping

Top python library tutorials to get
you started in web scraping

Introduction

Although web scraping in its totality is a complex and nuanced field of
knowledge, building your own basic web scraper is not all that difficult.
And that’s mostly due to coding languages such as Python. Python is
one of the easiest ways to get started as it is an object-oriented
language. Python’s classes and objects are significantly easier to use
than in any other language. Additionally, many libraries exist that make
building a tool for web scraping in Python an absolute breeze. This
document will go through four most popular libraries and the basics on
how to get started in web scraping.

1

Why Use Python? 4
Python advantages for web scraping 4
Comparing Python to other languages 5

Web Scraping Libraries: Where to Start? 7

Puppeteer: Scraping With a Headless Browser 8

Web Scraping With Selenium 25

Web Scraping With lxml 34
Using Beautiful Soup to Parse Data 48

2

Why Use Python?

If you need to start writing code for web scraping, it is definitely worth it
to learn Python. The best part is that Python, compared to other
programming languages, is easy to learn, clear to read, and simple to
write in.

Python advantages for web scraping

Diverse libraries. Python has a fantastic collection of libraries such as

BeautifulSoup, Selenium, lxml, and much more. These libraries are a
perfect fit for web scraping and, also, for further work with extracted
data. You will find more information about these libraries below.

Easy to use. To put it simply, Python is easy to code. Of course, it is
wrong to believe that you would easily write a code for web scraping
without any programming knowledge. But, compared to other
languages, it is much easier to use as you do not have to add
semicolons like “;” or curly-brackets “{}” everywhere. Many developers
agree that this is the reason why Python is less messy. Furthermore,
Python syntax is clear and easy to read. Developers can simply navigate
between different blocks in the code.

Saves time. As you probably know, web scraping was created to

simplify time-consuming tasks like collecting vast amounts of data
manually. Using Python for web scraping is similar because you are
able to write a little bit of code that completes a large task. Python
saves a bunch of developers’ time.

3

Community. As Python is one of the most popular programming
languages, it also has a very active community. Developers are sharing
their knowledge on various questions, so if you are struggling while
writing the code, you can always search for help.

Comparing Python to other languages

Python is the most popular programming language for web scraping

because it can handle almost all processes related to data extraction
smoothly. However, there are other languages that can be used by
developers for web scraping such as Ruby, C ++, PHP.

All of these languages have their pros and cons compared to Python, so
let’s compare them in terms of web scraping.

4

Python is a perfect fit for building web scrapers and extracting data as

it has a large selection of libraries, and an active community to search
for help if you have issues with coding. One of the most important parts
why use Python for web scraping is that Python is easy to learn, clear to
read, and simple to write in.

5

Web Scraping Libraries: Where to Start?

Your dev team, of course, will be working with various libraries,
integration tools, etc. There are many libraries to choose from. However,
we list out the most popular, tried and tested libraries and tools you
might need when building your infrastructure. Here are the top four:

● Puppeteer for JavaScript-heavy websites. If you are scraping hotel
listings, e-commerce product pages, or similar – this will become
your main headache. Many modern sites use JavaScript to load
content asynchronously (i.e., hides part of the content to not be
visible during the initial page load). The easiest way to manage
JavaScript-heavy sites is to use a headless browser – a browser,
but without a graphical user interface. This is where Puppeteer
comes into the picture.

● Selenium. Similarly to Puppeteer, it is a solution that helps control
headless browsers. It is one of the more popular browser
automation tools out there, so experimenting with both is
suggested.

● lxml. lxml is one of the fastest and feature-rich libraries for
processing XML and HTML in Python. By using the lxml library,
XML and HTML documents can be created, parsed, and queried.

● Beautiful soup for parsing. We will cover parsing a little bit later in

this article, but to put it simply, there is no real point to web
scraping without being able to parse your data to make it more
readable. Beautiful soup is a Python package used for parsing
HTML and XML documents.

6

Puppeteer: Scraping With a Headless
Browser

Automating web scraping

Generally, there are two methods of accessing and parsing web pages.

The first method uses packages e.g., Axios. It directly sends a get
request to the web page and receives HTML content. This can then be
parsed using packages like Cheerio.

Though this is a fast method, it has its limitations. The biggest is that it
cannot handle dynamic sites – sites that are rendered using JavaScript.
The easiest way to manage these sites is to open a browser and load
the site.

Unfortunately, loading a browser would take a lot of resources because

it has to load a lot of other things like the toolbar and buttons. These UI
elements are not needed when everything is being controlled with
code. Fortunately, there are better solutions – headless browsers.

What is a headless browser?

A headless browser is simply a browser but without a graphical user

interface. Think of it as a hidden browser. Headless browsers have
complete functionality offered by a browser while being faster and
taking up a lot less memory because there is no user interface.
Everything is controlled programmatically.

7

The most commonly used browsers, Chrome and Firefox, support
headless mode. There are few more browsers with headless mode
supported, for example, Splash, Chromium, etc. Splash is aimed at
Python programmers. In this Puppeteer tutorial, we will be focusing on
Chromium.

Chromium is an open-source web browser made by Google. Note that
Chromium and Chrome are two different browsers. Chromium is an
open-source project. Chrome and is built over Chromium by adding
many features. In addition to Chrome, many other browsers are based
on Chromium, for example, Microsoft Edge, Opera, Brave, etc.

Now that we know what a headless browser is, it’s time to understand
the available options to control the browsers programmatically.

Controlling the browsers programmatically

There are several solutions to control headless browsers. Perhaps the
most widely known solution is Selenium. We will cover selenium
later in this article, but to quickly answer is Puppeteer better than
selenium – if you need a lightweight and fast headless browser for
web scraping, Google Puppeteer would be the better choice.

This Puppeteer tutorial will cover Puppeteer in much detail.
Puppeteer, however, is a Node.js package, making it exclusive for
JavaScript developers. Python programmers, therefore, have a
similar option – Pyppeteer.

Pyppeteer

8

Pyppeteer is an unofficial port of Puppeteer for Python. This also
bundles Chromium and works smoothly with it. Pyppeteer can work
with Chrome as well, similar to Puppeteer.

The syntax is very similar as it uses the asyncio library for Python, except
the syntactical differences between Python and JavaScript. Here are
two scripts in JavaScript and Python that load a page and then take a
screenshot of it.

Puppeteer example:

const puppeteer = require('puppeteer');

async function main() {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.goto('https://oxylabs.io/');

 await page.screenshot({'path': 'oxylabs_js.png'})

 await browser.close();

}

main();

Pyppeteer Example:
import asyncio

import pyppeteer

async def main():

 browser = await pyppeteer.launch()

 page = await browser.newPage()

 await page.goto('https://oxylabs.io/')

 await page.screenshot({'path': 'oxylabs_python.png'})

 await browser.close()
asyncio.get_event_loop().run_until_complete(main())

The code is very similar. For web scraping dynamic websites, Pyppeteer
can be an excellent alternative to Selenium for Python developers. But
for the sake of making a Puppeteer tutorial, the following sections, we
will cover Puppeteer, starting with the installation.

9

https://pypi.org/project/pyppeteer/

Installation

Before moving on with this Puppeteer tutorial, let’s get the basic tools
installed.

Prerequisite

There are only two pieces of software that will be needed:

● Node.js (which is bundled with npm—the package manager for

Node.js)

● Any code editor

The only thing that you need to know about Node.js is that it is a

runtime framework. This means that JavaScript code, which typically
runs in a browser, can run without a browser.

Node.js is available for Windows, Mac OS, and Linux. It can be

downloaded at their official download page.

Create node.js project

Before writing any code to web scrape using node js, create a folder
where JavaScript files will be stored. All the code for Puppeteer is
written in .js files and is run by Node.

Once the folder is created, navigate to this folder and run the
initialization command:

npm init -y

10

https://nodejs.org/en/download/

This will create a package.json file in the directory. This file will contain
information about the packages that are installed in this folder. The
next step is to install the Node.js Packages in this folder.

How do you run Puppeteer

Installing Puppeteer is very easy. Just run the npm install command
from the terminal. Note that the working directory should be the one
which contains package.json:

npm install puppeteer

Note that Puppeteer is bundled with a full instance of Chromium.

When it is installed, it downloads a recent version of Chromium that is
guaranteed to work with the version of Puppeteer being installed.

Getting started with Puppeteer

Puppeteer is a promise-based library, which means it performs

asynchronous calls. This Puppeteer tutorial will have all of the examples
in async-await syntax.

Simple example of using Puppeteer

Create a new file in your node project directory (the directory that

contains package.json and node_modules). Save this file as example1.js
and add this code:

const puppeteer = require('puppeteer');

async function main() {

 // Add code here

}

main();

11

The code above can be simplified by making the function anonymous
and calling it on the same line:

const puppeteer = require('puppeteer');

(async () => {

 // Add code here

})();

The required keyword will ensure that the Puppeteer library is available
in the file. The rest of the lines are the placeholder where an
anonymous, asynchronous function is being created and executed. For
the next step, launch the browser.

const browser = await puppeteer.launch();

Note that by default, the browser is launched in the headless mode. If
there is an explicit need for a user interface, the above line can be
modified to include an object as a parameter.

const browser = await puppeteer.launch({headless:false}); //

default is true

The next step would be to open a page:

const page = await browser.newPage();

Now that a page or in other words, a tab, is available, any website can
be loaded by simply calling the goto() function:

await page.goto('https://oxylabs.io/');

Once the page is loaded, the DOM elements, as well the rendered page
is available. This can be verified by taking a quick screenshot:

12

await page.screenshot({path: 'oxylabs_1080.png'})

This, however, will create only an 800×600 pixel image. The reason is

that Puppeteer sets an initial page size to 800×600px. This can be
changed by setting the viewport, before taking the screenshot.

 await page.setViewport({

 width: 1920,

 height: 1080,

 });

Finally, remember to close the browser:

await browser.close();

Putting it altogether, here is the complete script.

const puppeteer = require('puppeteer');

(async () => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.setViewport({

 width: 1920,

 height: 1080,

 });

 await page.goto('https://oxylabs.io/');

 await page.screenshot({path: 'oxylabs_1080.png'})

 await browser.close();

})();

Run this file from the terminal using this command:

node example1.js

This should create a new file oxylabs_1080.png in the same directory.

Bonus tip: If you need a PDF, you can use the pdf() function:

13

await page.pdf({path: 'oxylabs.pdf', format: 'A4'});

Scraping an element from a page

Puppeteer loads the complete page in DOM. This means that we can
extract any data from the page. The easiest way to do this is to use the
function evaluate(). This allows JavaScript functions like
document.querySelector(). Consequently, it lets us extract any Element
from the DOM.

To understand this, open this link in your preferred browser:
https://en.wikipedia.org/wiki/Web_scraping

Once the page is loaded, right-click the heading of the page, and select

Inspect. This should open developer tools with the Elements tab
activated. Here it is visible that the page’s heading is in h1 element, with
id and class both set to firstHeading.

Now, go to the Console tab in the developer toolbox and write in this
line:

document.querySelector('#firstHeading')

You will immediately see that our desired tag is extracted.

14

https://en.wikipedia.org/wiki/Web_scraping
https://en.wikipedia.org/wiki/Web_scraping

This returns one element from the page. For this particular element, all

we need is text. Text can be easily extracted with this line of code:

document.querySelector('#firstHeading').textContent

The text can now be returned using the return keyword. The next step
is to surround this in the evaluate method. This will ensure that this
querySelector can be run.

await page.evaluate(() => {

 return document.querySelector("#firstHeading").textContent;

});

The result of the evaluate() function can be stored in a variable to
complete the functionality. Finally, do not forget to close the browser.
Here is the complete script:

const puppeteer = require("puppeteer");

(async () => {

 const browser = await puppeteer.launch();

15

 const page = await browser.newPage();

 await page.goto("https://en.wikipedia.org/wiki/Web_scraping");

 title = await page.evaluate(() => {

 return

document.querySelector("#firstHeading").textContent.trim();

 });

 console.log(title);

 await browser.close();

})();

Scraping multiple elements

Extracting multiple elements would involve three steps:

1. Use of querySelectorAll to get all elements matching the selector:

headings_elements = document.querySelectorAll("h2

.mw-headline");

2. create an array, as heading_elements is of type NodeList.

headings_array = Array.from(headings_elements);

3. Call the map() function can be called to process each element in the

array and return it.

return headings_array.map(heading => heading.textContent);

This of course needs to be surrounded by page.evaluate() function.
Putting everything together, this is the complete script. You can save
this as wiki_toc.js:

const puppeteer = require("puppeteer");

16

(async () => {

 const browser = await puppeteer.launch();

 const page = await browser.newPage();

 await page.goto("https://en.wikipedia.org/wiki/Web_scraping");

 headings = await page.evaluate(() => {

 headings_elements = document.querySelectorAll("h2

.mw-headline");

 headings_array = Array.from(headings_elements);

 return headings_array.map(heading => heading.textContent);

 });

 console.log(headings);

 await browser.close();

})();

This file can now be run from your terminal:

node wiki_toc.js

Bonus tip: Array.from() function can be supplied with a map function
directly, without a separate call to map. Depending on the comfort
level, the same code can thus be written as:

headings = await page.evaluate(() => {

 return Array.from(document.querySelectorAll("h2

.mw-headline"),

 heading => heading.innerText.trim());

 });

Scraping a hotel listing page

This section will explain how a typical listing page can be scraped to get

a JSON object with all the required information. The concepts
presented in this section will be applicable for any listing, whether it is
an online store, a directory, or a hotel listing.

17

The example that we will take is an Airbnb. Apply some filters so that
you reach a page similar to the one in the screenprint. In this particular
example, we will be scraping this Airbnb page that lists 20 hotels. To
scrape all 20 hotels, the first step is to identify the selector for each
hotel section.

root = Array.from(document.querySelectorAll("#FMP-target

[itemprop='itemListElement']"));

This returns a NodeList of length 20 and stores in the variable root. Note
that so far, text or any attribute has not been extracted. All we have is
an array of elements. This will be done in the map() function.

hotels = root.map(hotel => ({

// code here

}));

The URL of the photo of the hotel can be extracted with a code like this:

hotel.querySelector("img").getAttribute("src")

Getting the name of the hotel is a little trickier. The classes used on this
page are some random words like _krjbj and _mvzr1f2. These class
names appear to be generated dynamically and may change later on. It
is better to have selectors which do not rely on these class names.

The hotel name can be extracted by combining parentElement and

nextElementSibling selectors:

hotel.querySelector('ol').parentElement.nextElementSibling.textC

ontent

18

https://www.airbnb.com/s/homes?refinement_paths%5B%5D=%2Fhomes&search_type=section_navigation&property_type_id%5B%5D=8

The most important concept to understand here is that we are
concatenating querySelectors. Effectively, the first hotel name is being
extracted with this line of code:

document.querySelectorAll("#FMP-target

[itemprop='itemListElement']")[0].querySelector('ol').parentElem

ent.nextElementSibling.textContent

Finally, we can create an object containing both of these values. The
syntax to create an object is like this:

Hotel = {

 Name: 'x',

 Photo: 'y'

 }

Putting everything together, here is the final script. Save it as bnb.js.

const puppeteer = require("puppeteer");

(async () => {

19

 let url =

"https://www.airbnb.com/s/homes?refinement_paths%5B%5D=%2Fhomes&

search_type=section_navigation&property_type_id%5B%5D=8";

 const browser = await puppeteer.launch(url);

 const page = await browser.newPage();

 await page.goto(url);

 data = await page.evaluate(() => {

 root = Array.from(document.querySelectorAll("#FMP-target

[itemprop='itemListElement']"));

 hotels = root.map(hotel => ({

 Name:

hotel.querySelector('ol').parentElement.nextElementSibling.textC

ontent,

 Photo: hotel.querySelector("img").getAttribute("src")

 }));

 return hotels;

 });

 console.log(data);

 await browser.close();

})();

Run this file from the terminal using:

node bnb.js

You should be able to see a JSON object printed on the console.

We recommend that you look at the official Puppeteer documentation
for more detailed information.

20

https://pptr.dev/

Web Scraping With Selenium

How does Selenium work? It automates your written script processes,
as the script needs to interact with a browser to perform repetitive
tasks like clicking, scrolling, etc. As described on Selenium’s official
webpage, it is “primarily for automating web applications for testing
purposes, but is certainly not limited to just that.”

In this guide, on how to web scrape with Selenium, we will be using
Python 3.x. as our main input language (as it is not only the most
common scraping language but the one we closely work with as well).

Setting up Selenium

Firstly, to download the Selenium package, execute the pip command
in your terminal:

pip install selenium

You will also need to install Selenium drivers, as it enables python to
control the browser on OS-level interactions. This should be accessible
via the PATH variable if doing a manual installation.

You can download the drivers for Firefox, Chrome, and Edge from here.

Quick starting Selenium

Let’s begin the automatization by starting up your browser:

● Open up a new browser window (in this instance, Firefox)

21

https://pypi.org/project/selenium/#drivers

● Load the page of your choice (our provided URL)

from selenium import webdriver

browser = webdriver.Firefox()

browser.get('http://oxylabs.io/')

This will launch it in the headful mode. In order to run your browser in

headless mode and run it on a server, it should look something like this:

from selenium import webdriver

from selenium.webdriver.firefox.options import Options

options = Options()

options.headless = True

options.add_argument("--window-size=1920,1200")

driver = webdriver.firefox(options=options,

executable_path=DRIVER_PATH)

driver.get("https://www.oxylabs.io/")

print(driver.page_source)

driver.quit()

Data extraction with Selenium by locating
elements

find_element

Selenium offers a variety of functions to help locate elements on a

page:

● find_element_by_id

● find_element_by_name

● find_element_by_xpath

22

● find_element_by_link_text (find element by using text value)

● find_element_by_partial_link_text (find element by matching
some part of a hyperlink text(anchor tag))

● find_element_by_tag_name

● find_element_by_class_name

● find_element_by_css_selector (find element by using a CSS
selector for id class)

As an example, let’s try and locate the H1 tag on oxylabs.io homepage

with Selenium:

<html>

 <head>

 ... something

 </head>

 <body>

 <h1 class="someclass" id="greatID"> Partner Up With

Proxy Experts</h1>

 </body>

</html>

h1 = driver.find_element_by_name('h1')

h1 = driver.find_element_by_class_name('someclass')

h1 = driver.find_element_by_xpath('//h1')

h1 = driver.find_element_by_id('greatID')

23

You can also use the find_elements (plural form) to return a list of

elements. E.g.:

all_links = driver.find_elements_by_tag_name('a')

This way, you’ll get all anchors in the page.

However, some elements are not easily accessible with an ID or a

simple class. This is why you will need XPath.

XPath

XPath is a syntax language that helps find a specific object in DOM.
XPath syntax finds the node from the root element either through an
absolute path or by using a relative path. e.g.:

● / : Select node from the root. /html/body/div[1] will find the first div

24

https://www.w3schools.com/js/js_htmldom.asp

● //: Select node from the current node no matter where they are.
//form[1] will find the first form element

● [@attributename=’value’]: a predicate. It looks for a specific node

or a node with a specific value.

Example:

//input[@name='email'] will find the first input element with

the name "email".

<html>

 <body>

 <div class = "content-login">

 <form id="loginForm">

 <div>

 <input type="text" name="email" value="Email

Address:">

 <input type="password"

name="password"value="Password:">

 </div>

 <button type="submit">Submit</button>

 </form>

 </div>

 </body>

</html>

WebElement

WebElement in Selenium represents an HTML element. Here are the

most commonly used actions:

● element.text (accessing text element)

● element.click() (clicking on the element)

25

● element.get_attribute(‘class’) (accessing attribute)

● element.send_keys(‘mypassword’) (sending text to an input)

Slow website render solutions

Some websites use a lot of JavaScript to render content, and they can

be tricky to deal with as they use a lot of AJAX calls. There are a few
ways to solve this:

● time.sleep(ARBITRARY_TIME)

● WebDriverWait()

Example:

try:

 element = WebDriverWait(driver, 10).until(

 EC.presence_of_element_located((By.ID, "mySuperId"))

)

finally:

 driver.quit()

This will allow the located element to be loaded after 10 seconds. To dig
deeper into this topic, go ahead and check out the official Selenium
documentation.

Selenium vs Puppeteer

The biggest reason for Selenium’s popularity and complexity is that it
supports writing tests in multiple programming languages. This
includes C#, Groovy, Java, Perl, PHP, Python, Ruby, Scala, and even

26

https://selenium-python.readthedocs.io/waits.html
https://selenium-python.readthedocs.io/waits.html

JavaScript. It supports multiple browsers, including Chrome, Firefox,
Edge, Internet Explorer, Opera, and Safari.

However, for web scraping tasks, Selenium is perhaps more complex

than it needs to be. Remember that Selenium’s real purpose is
functional testing. For effective functional testing, it mimics what a
human would do in a browser. Selenium thus needs three different
components:

● A driver for each browser

● Installation of each browser

● The package/library depending on the programming language
used

In the case of Puppeteer, though, the node package puppeteer

includes Chromium. It means no browser or driver is needed. It makes
it simpler. It also supports Chrome if that is what you need.

On the other hand, multiple browser support is missing. Firefox support

is limited. Google announced Puppeteer for Firefox, but it was soon
deprecated. As wehn writing this, Firefox support is experimental. So, to
sum up, if you need a lightweight and fast headless browser for web
scraping, Puppeteer would be the better choice.

27

https://www.npmjs.com/package/puppeteer-firefox
https://github.com/puppeteer/puppeteer#q-which-firefox-version-does-puppeteer-use

Web Scraping With lxml

Prerequisite

This tutorial is aimed at developers who have at least a basic
understanding of Python. A basic understanding of XML and HTML is
also required. Simply put, if you know what an attribute is in XML, that is
enough to understand this article.

This tutorial uses Python 3 code snippets but everything works on

Python 2 with minimal changes as well.

What is lxml in Python?

lxml is one of the fastest and feature-rich libraries for processing XML

and HTML in Python. This library is essentially a wrapper over C libraries
libxml2 and libxslt. This combines the speed of the native C library and
the simplicity of Python.

Using Python lxml library, XML and HTML documents can be created,

parsed, and queried. It is a dependency on many of the other complex
packages like Scrapy.

Installation

The best way to download and install the lxml library is from Python
Package Index (PyPI). If you are on Linux (debian-based), simply run:

sudo apt-get install python3-lxml

28

https://pypi.org/project/lxml/
https://pypi.org/project/lxml/

Another way is to use the pip package manager. This works on
Windows, Mac, and Linux:

pip3 install lxml

On windows, just use pip install lxml, assuming you are running Python
3.

Creating a simple XML document

Any XML or any XML compliant HTML can be visualized as a tree. A tree

has a root and branches. Each branch optionally may have further
branches. All these branches and the root are represented as an
Element.

A very simple XML document would look like this:

<root>

 <branch>

 <branch_one>

 </branch_one>

 <branch_one>

 </branch_one >

 </branch>

</root>

If an HTML is XML compliant, it will follow the same concept.

Note that HTML may or may not be XML compliant. For example, if an
HTML has
 without a corresponding closing tag, it is still valid
HTML, but it will not be a valid XML. In the later part of this tutorial, we
will see how these cases can be handled. For now, let’s focus on XML
compliant HTML.

29

The Element class

To create an XML document using python lxml, the first step is to
import the etree module of lxml:

>>> from lxml import etree

Every XML document begins with the root element. This can be created
using the Element type. The Element type is a flexible container object
which can store hierarchical data. This can be described as a cross
between a dictionary and a list.

In this python lxml example, the objective is to create an HTML, which is

XML compliant. It means that the root element will have its name as
html:

>>> root = etree.Element("html")

Similarly, every html will have a head and a body:

>>> head = etree.Element("head")

>>> body = etree.Element("body")

To create parent-child relationships, we can simply use the append()

method.

>>> root.append(head)

>>> root.append(body)

This document can be serialized and printed to the terminal with the
help of tostring() function. This function expects one mandatory
argument, which is the root of the document. We can optionally set
pretty_print to True to make the output more readable. Note that

30

tostring() serializer actually returns bytes. This can be converted to
string by calling decode():

>>> print(etree.tostring(root, pretty_print=True).decode())

The SubElement class

Creating an Element object and calling the append() function can
make the code messy and unreadable. The easiest way is to use the
SubElement type. Its constructor takes two arguments – the parent
node and the element name. Using SubElement, the following two
lines of code can be replaced by just one.

body = etree.Element("body")

root.append(body)

is same as

body = etree.SubElement(root,"body")

Setting text and attributes

Setting text is very easy with the lxml library. Every instance of the

Element and SubElement exposes two methods – text and set, the
former is used to specify the text and later is used to set the attributes.
Here are the examples:

para = etree.SubElement(body, "p")

para.text="Hello World!"

Similarly, attributes can be set using key-value convention:

para.set("style", "font-size:20pt")

One thing to note here is that the attribute can be passed in the
constructor of SubElement:

31

para = etree.SubElement(body, "p", style="font-size:20pt",

id="firstPara")

para.text = "Hello World!"

The benefit of this approach is saving lines of code and clarity. Here is
the complete code. Save it in a python file and run it. It will print an
HTML which is also a well-formed XML.

from lxml import etree

root = etree.Element("html")

head = etree.SubElement(root, "head")

title = etree.SubElement(head, "title")

title.text = "This is Page Title"

body = etree.SubElement(root, "body")

heading = etree.SubElement(body, "h1", style="font-size:20pt",

id="head")

heading.text = "Hello World!"

para = etree.SubElement(body, "p", id="firstPara")

para.text = "This HTML is XML Compliant!"

para = etree.SubElement(body, "p", id="secondPara")

para.text = "This is the second paragraph."

etree.dump(root) # prints everything to console. Use for debug

only

Note that here we used etree.dump() instead of calling etree.tostring().

The difference is that dump() simply writes everything to the console
and doesn’t return anything, tostring() is used for serialization and
returns a string which you can store in a variable or write to a file.
dump() is good for debug only and should not be used for any other
purpose.

Add the following lines at the bottom of the snippet and run it again:

with open(‘input.html’, ‘wb’) as f:

 f.write(etree.tostring(root, pretty_print=True)

32

This will save the contents to input.html in the same folder you were
running the script. Again, this is a well-formed XML, which can be
interpreted as XML or HTML.

How do you parse an XML file using LXML in Python?

The previous section was a Python lxml tutorial on creating XML files. In
this section, we will look at traversing and manipulating an existing
XML document using the lxml library.

Before we move on, save the following snippet as input.html.

<html>

 <head>

 <title>This is Page Title</title>

 </head>

 <body>

 <h1 style="font-size:20pt" id="head">Hello World!</h1>

 <p id="firstPara">This HTML is XML Compliant!</p>

 <p id="secondPara">This is the second paragraph.</p>

 </body>

</html>

When an XML document is parsed, the result is an in-memory
ElementTree object.

The raw XML contents can be in a file system or a string. If it is in a file

system, it can be loaded using the parse method. Note that the parse
method will return an object of type ElementTree. To get the root
element, simply call the getroot() method.

from lxml import etree

tree = etree.parse('input.html')

elem = tree.getroot()

etree.dump(elem) #prints file contents to console

33

The lxml.etree module exposes another method that can be used to
parse contents from a valid xml string — fromstring()

xml = '<html><body>Hello</body></html>'

root = etree.fromstring(xml)

etree.dump(root)

One important difference to note here is that fromstring() method
returns an object of element. There is no need to call getroot().

If you want to dig deeper into parsing, we have already written a
tutorial on BeautifulSoup, a Python package used for parsing HTML and
XML documents. But to quickly answer what is lxml in BeautifulSoup,
lxml can use BeautifulSoup as a parser backend. Similarly,
BeautifulSoup can employ lxml as a parser.

Finding elements in XML

Broadly, there are two ways of finding elements using the Python lxml
library. The first is by using the Python lxml querying languages: XPath
and ElementPath. For example, the following code will return the first
paragraph element.

Note that the selector is very similar to XPath. Also note that the root

element name was not used because elem contains the root of the
XML tree.

tree = etree.parse('input.html')

elem = tree.getroot()

para = elem.find('body/p')

etree.dump(para)

Output

<p id="firstPara">This HTML is XML Compliant!</p>

34

https://oxylabs.io/blog/beautiful-soup-parsing-tutorial

Similarly, findall() will return a list of all the elements matching the
selector.

elem = tree.getroot()

para = elem.findall('body/p')

for e in para:

 etree.dump(e)

Outputs

<p id="firstPara">This HTML is XML Compliant!</p>

<p id="secondPara">This is the second paragraph.</p>

The second way of selecting the elements is by using XPath directly.

This approach is easier to follow by developers who are familiar with
XPath. Furthermore, XPath can be used to return the instance of the
element, the text, or the value of any attribute using standard XPath
syntax.

para = elem.xpath('//p/text()')

for e in para:

 print(e)

Output

This HTML is XML Compliant!

This is the second paragraph.

Handling HTML with lxml.html

Throughout this article, we have been working with a well-formed

HTML which is XML compliant. This will not be the case a lot of the time.
For these scenarios, you can simply use lxml.html instead of lxml.etree.

Note that reading directly from a file is not supported. The file contents

should be read in a string first. Here is the code to print all paragraphs
from the same HTML file.

from lxml import html

35

with open('input.html') as f:

 html_string = f.read()

tree = html.fromstring(html_string)

para = tree.xpath('//p/text()')

for e in para:

 print(e)

Output

This HTML is XML Compliant!

This is the second paragraph

lxml web scraping tutorial

Now that we know how to parse and find elements in XML and HTML,
the only missing piece is getting the HTML of a web page.

For this, the ‘requests’ library is a great choice. It can be installed using

the pip package manager:

pip install requests

Once the requests library is installed, HTML of any web page can be

retrieved using a simple get() method. Here is an example.

import requests

response = requests.get('http://books.toscrape.com/')

print(response.text)

prints source HTML

This can be combined with lxml to retrieve any data that is required.

Here is a quick example that prints a list of countries from Wikipedia:

import requests

from lxml import html

36

response =

requests.get('https://en.wikipedia.org/wiki/List_of_countries_by

_population_in_2010')

tree = html.fromstring(response.text)

countries = tree.xpath('//span[@class="flagicon"]')

for country in countries:

 print(country.xpath('./following-sibling::a/text()')[0])

In this code, the HTML returned by response.text is parsed into the

variable tree. This can be queried using standard XPath syntax. The
XPaths can be concatenated. Note that the xpath() method returns a
list and thus only the first item is taken in this code snippet.

This can easily be extended to read any attribute from the HTML. For
example, the following modified code prints the country name and
image URL of the flag.

for country in countries:

 flag = country.xpath('./img/@src')[0]

 country = country.xpath('./following-sibling::a/text()')[0]

 print(country, flag)

Python lxml library is a light-weight, fast, and feature-rich library. This

can be used to create XML documents, read existing documents, and
find specific elements. This makes this library equally powerful for both
XML and HTML documents. Combined with requests library, it can also
be easily used for web scraping.

37

Using Beautiful Soup to Parse Data

This tutorial is useful for those seeking to quickly grasp the value that
Python and Beautiful Soup v4 offers. After following the provided
examples you should be able to understand the basic principles of how
to parse HTML data. The examples will demonstrate traversing a
document for HTML tags, printing the full content of the tags, finding
elements by ID, extracting text from specified tags and exporting it to a
.csv file.

What is Beautiful Soup?

Beautiful Soup is a Python package for parsing HTML and XML
documents. It creates a parse tree for parsed pages based on specific
criteria that can be used to extract, navigate, search and modify data
from HTML, which is mostly used for web scraping. It is available for
Python 2.7 and Python 3. A useful library, it can save programmers
loads of time.

Installing Beautiful Soup

Before working on this tutorial, you should have a Python
programming environment set up on your machine. For this tutorial we
will assume that PyCharm is used since it’s a convenient choice even
for the less experienced with Python and is a great starting point.
Otherwise, simply use your go-to IDE.

On Windows, when installing Python make sure to tick the “PATH
installation” checkbox. PATH installation adds executables to the

38

https://www.jetbrains.com/pycharm/

default Windows Command Prompt executable search. Windows will
then recognize commands like “pip” or “python” without having to
point to the directory of the executable which makes things more
convenient.

You should also have Beautiful Soup installed on your system. No

matter the OS, you can easily do it by using this command on the
terminal to install the current latest version of Beautiful Soup:

pip install BeautifulSoup4

If you are using Windows, it is recommended to run terminal as
administrator to ensure that everything works out smoothly.

Finally, since we will be working with a sample file written in HTML, you

should be at least somewhat familiar with HTML structure.

Getting started

A sample HTML file will help demonstrate the main methods of how
Beautiful Soup parses data. This file is much more simple than your
average modern website, however, it will be sufficient for the scope of
this tutorial.

<!DOCTYPE html>

<html>

 <head>

 <title>What is a Proxy?</title>

 <meta charset="utf-8">

 </head>

 <body>

 <h2>Proxy types</h2>

39

 <p>

There are many different ways to categorize proxies. However,

two of the most popular types are residential and data center

proxies. Here is a list of the most common types.

 </p>

 <ul id="proxytypes">

 Residential proxies

 Datacenter proxies

 Shared proxies

 Semi-dedicated proxies

 Private proxies

 </body>

</html>

For PyCharm to use this file, simply copy it to any text editor and save it

with the .html extension to the directory of your PyCharm project.

Going further, open PyCharm and after a right click on the project area

navigate to New -> Python File. Congratulations and welcome to your
new playground!

Traversing for HTML tags

First, we can use Beautiful Soup to extract a list of all the tags used in

our sample HTML file. For this, we will use the soup.descendants
generator.

from bs4 import BeautifulSoup

with open('index.html', 'r') as f:

 contents = f.read()

 soup = BeautifulSoup(contents, features="html.parser")

40

 for child in soup.descendants:

 if child.name:

 print(child.name)

After running this code (right click on code and click “Run”) you should
get the below output:

html

head

title

meta

body

h2

p

ul

li

li

li

li

li

What just happened? Beautiful Soup traversed our HTML file and
printed all the HTML tags that it has found sequentially. Let’s take a
quick look at what each line did.

from bs4 import BeautifulSoup

This tells Python to use the Beautiful Soup library.

with open('index.html', 'r') as f:

 contents = f.read()

And this code, as you could probably guess, gives an instruction to
open our sample HTML file and read its contents.

 soup = BeautifulSoup(contents, features="html.parser")

41

This line creates a BeautifulSoup object and passes it to Python’s built
in HTML parser. Other parsers, such as lxml, might also be used, but it is
a separate external library and for the purpose of this tutorial the
built-in parser will do just fine.

 for child in soup.descendants:

 if child.name:

 print(child.name)

The final pieces of code, namely the soup.descendants generator,
instruct Beautiful Soup to look for HTML tags and print them in the
PyCharm console. The results can also easily be exported to a .csv file
but we will get to this later.

Getting the full content of tags

To get the content of tags, this is what we can do:

from bs4 import BeautifulSoup

with open('index.html', 'r') as f:

 contents = f.read()

 soup = BeautifulSoup(contents, features="html.parser")

 print(soup.h2)

 print(soup.p)

 print(soup.li)

This is a simple instruction that outputs the HTML tag with its full

content in the specified order. Here’s what the output should look like:

<h2>Proxy types</h2>

<p>

 There are many different ways to categorize proxies.

However, two of the most popular types are residential and data

center proxies. Here is a list of the most common types.

42

 </p>

Residential proxies

You could also remove the HTML tags and print text only, by using, for

example:

 print(soup.li.text)

Which in our case will give the following output:

Residential proxies

Note that this only prints the first instance of the specified tag. Let’s

continue to see how to find elements by ID or using the find_all
method to filter elements by specific criteria.

Using Beautiful Soup to find elements by ID

We can use two similar ways to find elements by ID:

 print(soup.find('ul', attrs={'id': 'proxytypes'}))

or

 print(soup.find('ul', id='proxytypes'))

Both of these will output the same result in the Python Console:

<ul id="proxytypes">

Residential proxies

Datacenter proxies

Shared proxies

Semi-dedicated proxies

Private proxies

43

Finding all specified tags and extracting text

The find_all method is a great way to extract specific data from an

HTML file. It accepts many criteria that make it a flexible tool allowing
us to filter data in convenient ways. Yet for this tutorial we do not need
anything more complex. Let’s find all items of our list and print them as
text only:

 for tag in soup.find_all('li'):

 print(tag.text)

This is how the full code should look like:

from bs4 import BeautifulSoup

with open('index.html', 'r') as f:

 contents = f.read()

 soup = BeautifulSoup(contents, features="html.parser")

 for tag in soup.find_all('li'):

 print(tag.text)

And here’s the output:

Residential proxies

Datacenter proxies

Shared proxies

Semi-dedicated proxies

Private proxies

Congratulations, you should now have a basic understanding of how
Beautiful Soup might be used to parse data. It should be noted that the
information presented in this article is useful as introductory material
yet real-world web scraping with BeautifulSoup and the consequent
parsing of data is usually much more complicated than this. For a more
in-depth look at Beautiful Soup you will hardly find a better source than
its documentation, so be sure to check it out too.

44

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

As you can see, Beautiful Soup is a greatly useful HTML parser. With a
relatively low learning curve, you can quickly grasp how to navigate,
search, and modify the parse tree. With the addition of libraries such as
pandas you can further manipulate and analyze the data which offers a
powerful package for a near infinite amount of data collection and
analysis use cases.

45

Want to know more?

learn about our products

If you would like to know more about any of
the topics mentioned in this compendium or

, please get in
touch! Our team is ready to answer any of
your questions and offer you the best solution
for your business needs.

Get in touch with Oxylabs

Our Mission

Our mission is to share all the
know-how that we collected over
the years in the industry in order
to create the future where big
data is accessible to all
businesses. We seek to create a
healthy environment for everyone
to grow and thrive in.

Our Values

Learn more

As a leading company in the
proxy and web scraping industry,
we ensure that the highest
standards of business ethics lead
all our operations. Our core
values guide us toward achieving
our mission.

https://oxylabs.io/products
mailto:hello@oxylabs.io
https://oxylabs.io/core-values

